

<Insert Picture Here>

Building a Custom BPM Worklist
Mark Nelson

Consulting Solution Architect

The A-Team

THE FOLLOWING IS INTENDED TO OUTLINE OUR GENERAL PRODUCT DIRECTION. IT

IS INTENDED FOR INFORMATION PURPOSES ONLY, AND MAY NOT BE

INCORPORATED INTO ANY CONTRACT. IT IS NOT A COMMITMENT TO DELIVER ANY

MATERIAL, CODE, OR FUNCTIONALITY, AND SHOULD NOT BE RELIED UPON IN

MAKING PURCHASING DECISION. THE DEVELOPMENT, RELEASE, AND TIMING OF

ANY FEATURES OR FUNCTIONALITY DESCRIBED FOR ORACLE'S PRODUCTS

REMAINS AT THE SOLE DISCRETION OF ORACLE.

Overview

Overview

• Lots of people ask us how to build a
custom BPM worklist, so we decided to
build a sample!

• The (as-is) sample is available in three
ways:

• A complete walkthrough on
http://redstack.wordpress.com/worklist

• Full source code and (Javadoc) documentation
from our Subversion server on OTN

• WAR files you can download and deploy

http://redstack.wordpress.com/worklist

Overview

• What functionality does it cover (currently)?

• Task list

• Filter by status and assignee

• Task details
• Payload

• Comments

• Attachments

• Process task (custom and
system actions)

• Navigate to owning instance

• Process instance list
• Filter by status

• Process instance details
• Show tasks that are part of

instance

• Show audit image (process
map)

• Sample chart

Overview

• What technology is it built with?

• Java (of course)

• Spring Web MVC

• JSP and JSTL for the view

• Protovis from Stanford Visualization Group for charting

• Maven for dependency management and build

• Hudson for continuous integration

• Subversion for version control

• vi for editing source files 

• No ADF – there are plenty of ADF samples available already

But designed so you can

easily replace the front end

Setting up the

development

environment

Setting up the development environment

• Version control

• Subversion 

• git?

• Build management

• Install dependencies into Maven repository – use the script to

populate Maven from an Oracle Home

• Set up a test environment

• Installation of the BPM server

• Define some processes/tasks to use for testing

Creating the

skeleton project

Creating the skeleton project

/ project root

 - src source files

 | - main source files for our application

 | | - java java source files

 | | | - com

 | | | | - oracle

 | | | | | - ateam Spring Controllers

 | | | | | | - domain 'business logic' - the Model

 | | | | | | - util utility classes

 | | - webapp web source files (JSPs, CSS, etc.)

 | | | - WEB-INF deployment descriptors and config files

 | | | | - jsp Spring Views (JSPs)

 | | | | | - common common JSP fragments (headers, etc.)

 | | | - images images

 | - test source code for our test cases

 - target output files from builds

 - pom.xml The Maven POM

Use Maven

webapp-javaee6

archetype

Setting up the POM

• Important sections:

• Dependencies for each JAR required

• maven-compiler-plugin configuration to set Java 6

• maven-war-plugin configuration with failOnMissingWebXml=false

• weblogic-maven-plugin configuration to handle deployment to

test environment

• scm, respositories and distributionManagement if you are

planning to use Maven release process

Setting up Spring Controllers

• Create a SimpleSuccessFailure

Controller, as per POWLS

• Allows parameterisation of view

• Create an Error Controller to

handle failures

• Invalidate session

• Log out user

• Display error view

Writing the

‘domain logic’

Writing the ‘domain logic’

• This is the part that actually talks to the BPM and

Human Workflow APIs

• This is kept in a separate package

• So that it is easy to reuse with other front-ends, i.e. other than

Spring Web MVC

• So that all the code that depends on BPM is in one place

• So that view designers are not exposed to the complexity of the

underlying APIs

Which API?

Important Classes

• MTaskList

• This is the main workhorse of the whole sample, it contains all

the methods that interact with BPM

• MTask

• This is a wrapper around the BPM/HWF Task object that

simplifies the interface for view designers

• ContextCache

• This class is used to cache security credentials to improve

performance of the application

MTaskList

• The MTaskList is responsible for:

• retrieving a list of tasks, in getMTasks(),

• getting details for a task, in getTaskDetails(),

• take an action on a task, in processTask(),

• add a comment to a task, in addComment(),

• authenticate the user to the workflow engine, in login(),

• get a list of tasks that the user can initiate, in getInitiateLinks(),

and

• initiate a task (start a process instance), in initiateTask().

MTaskList (continued)

• The MTaskList is responsible for:

• adding an attachment to a task, in addAttachment(),

• get a list of process instances, in queryInstances(),

• get details for a process instance, in getInstanceDetails(),

• find all of the tasks for a given process instance, in

findTasksForProcess(),

• get the process instance that a given task belongs to, in

getProcessInstanceId(), and

• get the audit image for a process instance, in getAuditImage().

Setting up security

Setting up security

• The sample uses WebLogic security, so that:

• The application never has knowledge of the user’s password –

making it more secure

• All user management is done in WebLogic – no need to

implement any user management functionality

• Allows for easy integration with SSO solutions

Security

• Login form POSTs to WebLogic login

(j_security_check)

• Declarative configuration of security protection

• weblogic.xml defines the welcome, login, error and success

pages, which URL patterns are protected, what login/user/role is

required to access protected resources

• Additional security design:

• All JSPs hidden in WEB-INF/jsp so that there is no way for user

to access them by URL

Task list and

details

Task list

• The Task list shows a

list of tasks with some

information about them

• We get this information

from the TaskQueryService.queryTasks() API

• It returns partially populated Task objects, which we wrap in

MTask objects

• We tell it which fields we want, and can pass in filters

• This dramatically improves query performance

Task details

• This page displays details
about the task and allows
to user to:

• Take a ‘custom’ or ‘system’
action on the task

• View the payload

• View and add comments

• View and add attachments

• To create this page, we
need to get the fully
populated (M)Task object

Processing tasks

Processing tasks

• Tasks are completed by setting an

‘OUTCOME’ on them

• There are two kinds:

• ‘CUSTOM’ – which are defined in the task

definition in JDeveloper

• ‘SYSTEM’ – which are always available, subject

to task state and user privileges

Adding comments

Adding comments

• Users can add comments to a task

and read comments from other

users

• Comments on initiate tasks are

attached to the process and are

visible in all subsequent tasks

• Comments on other types of task

are just visible in the task they are

added to

Attachments

Attachments

• Users can add attachments to a task
and view (download) attachments
from other users

• The API to view/download an attachment returns binary
data in an InputStream – we use a little Spring Controller
trick to force the browser to download it (return null from
Controller)

• The API to add an attachment is introduced in 11.1.1.5.1
(not released yet) so we need to use a helper class

• Available on redstack.wordpress.com/worklist

• Closely resembles the planned API – should not be too much change

Initiating a task

Initiating a task

• Allows user to start a process
which has an initiate task

• We present the same list
as shown in the OOTB
workspace’s ‘Applications’
list

• When user selects the task, we pop the registered
task URL in a new window (ADF or other)

• This is a two step process – start a process instance,
then get the task URL

Process instance

list and detail

Process instance list

• The process list page uses

an (undocumented) BPM

API to retrieve a list of

process instances

• We plan to release

documentation for the BPM

APIs in the future

• For now, this sample shows

you what is available and

how to use them

Process instance detail

• This page shows:

• Details about the process

instance

• A list of the tasks that are a

part of this process instance,

and links to view their details

• The process audit image for

this instance (discussed

shortly)

Getting the audit

image

Getting the audit image

• The audit image shows

where the process instance

is up to, and how it got

there

• We currently need to use a utility class to get access

to the audit image – this is provided on

redstack.wordpress.com/worklist

• The API provides a PNG format image in an

InputStream

Charts

Charts

• The documentation lists
several examples of charts
you may wish to include in a
worklist application

• The sample demonstrates
how to create one of these
charts

• Uses the (JavaScript based)
Protovis charting library from
the Stanford Visualization
Group

More Information

• Find the sample, documentation and source code at:

 http://redstack.wordpress.com/worklist

• What’s next for the sample?

• Internationalization support

• Refactor into a library + application with the library exposing
web services for non-Java clients, maybe REST, JSON

• Silverlight, Android and iOS front ends

http://redstack.wordpress.com/worklist

